Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
1.
Nat Commun ; 15(1): 3747, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702310

RESUMEN

In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.


Asunto(s)
ARN Helicasas DEAD-box , Plasmodium falciparum , Proteínas Protozoarias , ARN Mensajero , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Estadios del Ciclo de Vida/genética , ARN Protozoario/metabolismo , ARN Protozoario/genética , Estabilidad del ARN , Humanos , Malaria Falciparum/parasitología
2.
Emerg Infect Dis ; 30(6)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662728

RESUMEN

During May-July 2023, a cluster of 7 patients at local hospitals in Florida, USA, received a diagnosis of Plasmodium vivax malaria. Whole-genome sequencing of the organism from 4 patients and phylogenetic analysis with worldwide representative P. vivax genomes indicated probable single parasite introduction from Central/South America.

3.
mSphere ; 9(4): e0014024, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38564734

RESUMEN

Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.


Asunto(s)
Reparación del ADN , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Replicación del ADN , Histonas/genética , Histonas/metabolismo , Regulación de la Expresión Génica
4.
Malar J ; 23(1): 102, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594716

RESUMEN

BACKGROUND: Ghana is among the top 10 highest malaria burden countries, with about 20,000 children dying annually, 25% of which were under five years. This study aimed to produce interactive web-based disease spatial maps and identify the high-burden malaria districts in Ghana. METHODS: The study used 2016-2021 data extracted from the routine health service nationally representative and comprehensive District Health Information Management System II (DHIMS2) implemented by the Ghana Health Service. Bayesian geospatial modelling and interactive web-based spatial disease mapping methods were employed to quantify spatial variations and clustering in malaria risk across 260 districts. For each district, the study simultaneously mapped the observed malaria counts, district name, standardized incidence rate, and predicted relative risk and their associated standard errors using interactive web-based visualization methods. RESULTS: A total of 32,659,240 malaria cases were reported among children < 5 years from 2016 to 2021. For every 10% increase in the number of children, malaria risk increased by 0.039 (log-mean 0.95, 95% credible interval = - 13.82-15.73) and for every 10% increase in the number of males, malaria risk decreased by 0.075, albeit not statistically significant (log-mean - 1.82, 95% credible interval = - 16.59-12.95). The study found substantial spatial and temporal differences in malaria risk across the 260 districts. The predicted national relative risk was 1.25 (95% credible interval = 1.23, 1.27). The malaria risk is relatively the same over the entire year. However, a slightly higher relative risk was recorded in 2019 while in 2021, residing in Keta, Abuakwa South, Jomoro, Ahafo Ano South East, Tain, Nanumba North, and Tatale Sanguli districts was associated with the highest malaria risk ranging from a relative risk of 3.00 to 4.83. The district-level spatial patterns of malaria risks changed over time. CONCLUSION: This study identified high malaria risk districts in Ghana where urgent and targeted control efforts are required. Noticeable changes were also observed in malaria risk for certain districts over some periods in the study. The findings provide an effective, actionable tool to arm policymakers and programme managers in their efforts to reduce malaria risk and its associated morbidity and mortality in line with the Sustainable Development Goals (SDG) 3.2 for limited public health resource settings, where universal intervention across all districts is practically impossible.


Asunto(s)
Malaria , Masculino , Niño , Humanos , Ghana/epidemiología , Teorema de Bayes , Malaria/epidemiología , Servicios de Salud , Riesgo
5.
Int Immunopharmacol ; 131: 111817, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38460299

RESUMEN

Adjuvants are critical components for vaccines, which enhance the strength and longevity of the antibody response and influence the types of immune response. Limited research has been conducted on the immunogenicity and protective efficacy of various adjuvants in malaria transmission-blocking vaccines (TBVs). In this study, we formulated a promising TBV candidate antigen, the P. berghei ookinete surface antigen PSOP25, with different types of adjuvants, including the TLR4 agonist monophosphoryl lipid A (MPLA), the TLR9 agonist cytosine phosphoguanosine oligodeoxynucleotides (CpG ODN 1826) (CpG), a saponin adjuvant QS-21, aluminum hydroxide (Alum), and two combination adjuvants MPLA + QS-21 and QS-21 + CpG. We demonstrated that adjuvanted vaccines results in elevated elicited antibody levels, increased proliferation of plasma cells, and efficient formation of germinal centers (GCs), leading to enhanced long-term protective immune responses. Furthermore, CpG group exhibited the most potent inhibition of ookinete formation and transmission-blocking activity. We found that the rPSOP25 with CpG adjuvant was more effective than MPLA, QS-21, MPLA + QS-21, QS-21 + CpG adjuvants in dendritic cells (DCs) activation and differentiation. Additionally, the CpG adjuvant elicited more rubust immune memory response than Alum adjuvant. CpG and QS-21 adjuvants could activate the Th1 response and promote the secretion of IFN-γ and TNF-α. PSOP25 induced a higher number of Tfh cells in splenocytes when combined with MPLA, CpG, and QS-21 + CpG; and there was no increase in these cell populations when PSOP25 was administered with Alum. In conclusion, CpG may confer enhanced efficacy for the rPSOP25 vaccine, as evidenced by the ability of the elicited antisera to induce protective immune responses and improved transmission-blocking activity.


Asunto(s)
Vacunas contra la Malaria , Malaria , Humanos , Adyuvantes Inmunológicos , Compuestos de Alumbre , Hidróxido de Aluminio , Malaria/prevención & control , Oligodesoxirribonucleótidos
6.
J Travel Med ; 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498330

RESUMEN

BACKGROUND: The effect of clothing colour on the biting rates of different vector mosquito species is not well understood. Studies under tropical field conditions are lacking. This study aimed to determine the influence of clothing colours on mosquito biting rates in rural and suburban settings in West Africa. METHODS: We performed a simulated field study in a suburban and a rural site in Mali using Mosquito-Magnet traps utilizing CO2 and other attractants, which were covered with black, white, and black/white striped textile sheets covers. These targets operated continuously for 10 consecutive days with bright nights (around full moon) and 10 consecutive days with dark nights (around new moon). Trapped mosquitoes were collected and catch rates counted hourly. Mosquitoes were morphologically identified to the species complex level (Anopheles gambiae s.l. and Culex pipiens s.l.) or species level (Aedes aegypti). A subset of Anopheles specimens were further identified by molecular methods. RESULTS: Under bright-night conditions, An. gambiae s.l. was significantly more attracted to black targets than to white and striped targets; during dark nights, no target preference was noted. During bright nights, Cx. pipiens s.l. was significantly more attracted to black and striped targets than to white targets; a similar trend was noted during dark nights (not significant). For day-active Ae. aegypti, striped targets were more attractive than the other targets and black were more attractive than white targets. CONCLUSIONS: The study firstly demonstrated that under field conditions in Mali, West Africa, mosquito catch rates were influenced by different clothing colours, depending on mosquito species and light conditions. Overall, light colours were least attractive to host-seeking mosquitoes. Using white or other light-coloured clothing can potentially reduce bite exposure and risk of disease transmission in endemic tropical regions.

7.
Int J Parasitol Drugs Drug Resist ; 24: 100532, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38520842

RESUMEN

Artemether-lumefantrine (AL) is the most widely used antimalarial drug for treating uncomplicated falciparum malaria. This study evaluated whether the K65Q mutation in the Plasmodium falciparum cysteine desulfurase IscS (Pfnfs1) gene was associated with alternated susceptibility to lumefantrine using clinical parasite samples from Ghana and the China-Myanmar border area. Parasite isolates from the China-Myanmar border had significantly higher IC50 values to lumefantrine than parasites from Ghana. In addition, the K65 allele was significantly more prevalent in the Ghanaian parasites (34.5%) than in the China-Myanmar border samples (6.8%). However, no difference was observed in the lumefantrine IC50 value between the Pfnfs1 reference K65 allele and the non reference 65Q allele in parasites from the two regions. These data suggest that the Pfnfs1 K65Q mutation may not be a reliable marker for reduced susceptibility to lumefantrine.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Lumefantrina/farmacología , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Plasmodium falciparum , Combinación Arteméter y Lumefantrina/uso terapéutico , Ghana , Artemisininas/farmacología , Artemisininas/uso terapéutico , Arteméter/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Mutación , Etanolaminas/farmacología , Etanolaminas/uso terapéutico , Resistencia a Medicamentos/genética
8.
Malar J ; 23(1): 40, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317164

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) has been effective in the supervised treatment of uncomplicated malaria in Ghana. Since ACT usage is primarily unsupervised, this study aimed to determine the effectiveness of artemether-lumefantrine (AL) for treating malaria patients in two transmission settings in Ghana. METHODS: Eighty-four individuals with uncomplicated Plasmodium falciparum malaria were recruited from Lekma Hospital (LH) in Accra (low-transmission area; N = 28), southern Ghana, and King's Medical Centre (KMC) in Kumbungu (high-transmission area; N = 56), northern Ghana. Participants were followed up for 28 days after unsupervised treatment with AL. The presence of asexual parasites was determined by microscopic examination of Giemsa-stained blood smears. Plasmodium species identification was confirmed using species-specific primers targeting the 18S rRNA gene. Parasite recrudescence or reinfection was determined by genotyping the Pfmsp 1 and Pfmsp 2 genes. RESULTS: After AL treatment, 3.6% (2/56) of the patients from KMC were parasitaemic on day 3 compared to none from the LH patients. One patient from KMC with delayed parasite clearance on day 3 remained parasite-positive by microscopy on day 7 but was parasite-free by day 14. While none of the patients from LH experienced parasite recurrence during the 28-day follow-up, three and two patients from KMC had recurrent parasitaemia on days 21 and 28, respectively. Percentage reduction in parasite densities from day 1, 2, and 3 for participants from the KMC was 63.2%, 89.5%, and 84.5%. Parasite densities for participants from the LH reduced from 98.2%, 99.8% on day 1, and 2 to 100% on day 3. The 28-day cumulative incidence rate of treatment failure for KMC was 12.8% (95% confidence interval: 1.9-23.7%), while the per-protocol effectiveness of AL in KMC was 89.47%. All recurrent cases were assigned to recrudescence after parasite genotyping by Pfmsp 1 and Pfmsp 2. CONCLUSION: While AL is efficacious in treating uncomplicated malaria in Ghana, when taken under unsupervised conditions, it showed an 89.4% PCR-corrected cure rate in northern Ghana, which is slightly below the WHO-defined threshold.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Combinación Arteméter y Lumefantrina/uso terapéutico , Antimaláricos/uso terapéutico , Ghana , Artemisininas/uso terapéutico , Combinación de Medicamentos , Arteméter/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Recurrencia , Parasitemia/tratamiento farmacológico , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Plasmodium falciparum/genética
9.
Malar J ; 23(1): 12, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195484

RESUMEN

BACKGROUND: Clothianidin, an insecticide with a novel mode of action, has been deployed in the annual indoor residual spraying programme in northern Ghana since March 2021. To inform pragmatic management strategies and guide future studies, baseline data on local Anopheles gambiae sensu lato (s.l.) susceptibility to the clothianidin insecticide were collected in Kpalsogu, a village in the Northern region, Ghana. METHODS: Phenotypic susceptibility of An. gambiae mosquitoes to clothianidin was assessed using the World Health Organization (WHO) insecticide resistance monitoring bioassay. The WHO cone bioassays were conducted on mud and cement walls sprayed with Sumishield 50 wettable granules (WG) (with clothianidin active ingredient). Daily mortalities were recorded for up to 7 days to observe for delayed mortalities. Polymerase chain reaction (PCR) technique was used to differentiate the sibling species of the An. gambiae complex and also for the detection of knock down resistance genes (kdr) and the insensitive acetylcholinesterase mutation (ace-1). RESULTS: The WHO susceptibility bioassay revealed a delayed killing effect of clothianidin. Mosquitoes exposed to the cone bioassays for 5 min died 120 h after exposure. Slightly higher mortalities were observed in mosquitoes exposed to clothianidin-treated cement wall surfaces than mosquitoes exposed to mud wall surfaces. The kdr target-site mutation L1014F occurred at very high frequencies (0.89-0.94) across all vector species identified whereas the ace-1 mutation occurred at moderate levels (0.32-0.44). Anopheles gambiae sensu stricto was the most abundant species observed at 63%, whereas Anopheles arabiensis was the least observed at 9%. CONCLUSIONS: Anopheles gambiae s.l. mosquitoes in northern Ghana were susceptible to clothianidin. They harboured kdr mutations at high frequencies. The ace-1 mutation occurred in moderation. The results of this study confirm that clothianidin is an effective active ingredient and should be utilized in malaria vector control interventions.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Anopheles/genética , Insecticidas/farmacología , Acetilcolinesterasa , Ghana , Mosquitos Vectores
10.
BMC Infect Dis ; 24(1): 41, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172708

RESUMEN

BACKGROUND: Imported cerebral malaria (CM) cases in non-endemic areas are often misdiagnosed, which delays treatment. Post-malaria neurological syndrome (PMNS) after recovery from severe malaria can also complicate diagnosis. CASE: We report an imported malaria case from West Africa with two sequential episodes with neurological syndromes within about a month. The first episode was diagnosed as CM with microscopy-positive Plasmodium falciparum infection. The second episode, occurring a month after the recovery from the first CM episode, was consistent with PMNS, since malaria parasites were not detected by microscopy in peripheral blood smears. However, this diagnosis was complicated by the detection of Plasmodium vivax in peripheral blood by PCR, suggesting a potential cause of the second episode by P. vivax. CONCLUSION: This study suggests that PMNS often occurs after severe falciparum malaria. Concurrent P. vivax infection with pathogenic biomass being predominantly extravascular further complicates accurate diagnosis.


Asunto(s)
Malaria Cerebral , Malaria Falciparum , Malaria Vivax , Plasmodium , Humanos , Plasmodium falciparum , Malaria Falciparum/complicaciones , Malaria Falciparum/diagnóstico , Malaria Falciparum/parasitología , Malaria Vivax/complicaciones , Malaria Vivax/diagnóstico , Malaria Vivax/parasitología , Plasmodium vivax/genética , Malaria Cerebral/complicaciones , Malaria Cerebral/diagnóstico
11.
Lancet Infect Dis ; 24(2): 172-183, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37748496

RESUMEN

BACKGROUND: Primaquine is used to eliminate Plasmodium vivax hypnozoites, but its optimal dosing regimen remains unclear. We undertook a systematic review and individual patient data meta-analysis to investigate the efficacy and tolerability of different primaquine dosing regimens to prevent P vivax recurrence. METHODS: For this systematic review and individual patient data meta-analysis, we searched MEDLINE, Web of Science, Embase, and Cochrane Central for prospective clinical studies of uncomplicated P vivax from endemic countries published between Jan 1, 2000, and June 8, 2023. We included studies if they had active follow-up of at least 28 days, and if they included a treatment group with daily primaquine given over multiple days, where primaquine was commenced within 7 days of schizontocidal treatment and was given alone or coadministered with chloroquine or one of four artemisinin-based combination therapies (ie, artemether-lumefantrine, artesunate-mefloquine, artesunate-amodiaquine, or dihydroartemisinin-piperaquine). We excluded studies if they were on prevention, prophylaxis, or patients with severe malaria, or if data were extracted retrospectively from medical records outside of a planned trial. For the meta-analysis, we contacted the investigators of eligible trials to request individual patient data and we then pooled data that were made available by Aug 23, 2021. We assessed the effects of total dose and duration of primaquine regimens on the rate of first P vivax recurrence between day 7 and day 180 by Cox's proportional hazards regression (efficacy analysis). The effect of primaquine daily dose on gastrointestinal symptoms on days 5-7 was assessed by modified Poisson regression (tolerability analysis). The study was registered with PROSPERO, CRD42019154470. FINDINGS: Of 226 identified studies, 23 studies with patient-level data from 6879 patients from 16 countries were included in the efficacy analysis. At day 180, the risk of recurrence was 51·0% (95% CI 48·2-53·9) in 1470 patients treated without primaquine, 19·3% (16·9-21·9) in 2569 patients treated with a low total dose of primaquine (approximately 3·5 mg/kg), and 8·1% (7·0-9·4) in 2811 patients treated with a high total dose of primaquine (approximately 7 mg/kg), regardless of primaquine treatment duration. Compared with treatment without primaquine, the rate of P vivax recurrence was lower after treatment with low-dose primaquine (adjusted hazard ratio 0·21, 95% CI 0·17-0·27; p<0·0001) and high-dose primaquine (0·10, 0·08-0·12; p<0·0001). High-dose primaquine had greater efficacy than low-dose primaquine in regions with high and low relapse periodicity (ie, the time from initial infection to vivax relapse). 16 studies with patient-level data from 5609 patients from ten countries were included in the tolerability analysis. Gastrointestinal symptoms on days 5-7 were reported by 4·0% (95% CI 0·0-8·7) of 893 patients treated without primaquine, 6·2% (0·5-12·0) of 737 patients treated with a low daily dose of primaquine (approximately 0·25 mg/kg per day), 5·9% (1·8-10·1) of 1123 patients treated with an intermediate daily dose (approximately 0·5 mg/kg per day) and 10·9% (5·7-16·1) of 1178 patients treated with a high daily dose (approximately 1 mg/kg per day). 20 of 23 studies included in the efficacy analysis and 15 of 16 in the tolerability analysis had a low or unclear risk of bias. INTERPRETATION: Increasing the total dose of primaquine from 3·5 mg/kg to 7 mg/kg can reduce P vivax recurrences by more than 50% in most endemic regions, with a small associated increase in gastrointestinal symptoms. FUNDING: Australian National Health and Medical Research Council, Bill & Melinda Gates Foundation, and Medicines for Malaria Venture.


Asunto(s)
Antimaláricos , Malaria Vivax , Malaria , Humanos , Primaquina/uso terapéutico , Antimaláricos/efectos adversos , Plasmodium vivax , Artesunato/uso terapéutico , Estudios Prospectivos , Estudios Retrospectivos , Arteméter/farmacología , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Australia , Malaria Vivax/tratamiento farmacológico , Malaria Vivax/prevención & control , Malaria Vivax/epidemiología , Malaria/tratamiento farmacológico , Recurrencia
12.
J Infect Dis ; 229(2): 567-575, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-37943633

RESUMEN

BACKGROUND: Human immunity triggered by natural malaria infections impedes parasite transmission from humans to mosquitoes, leading to interest in transmission-blocking vaccines. However, immunity characteristics, especially strain specificity, remain largely unexplored. We investigated naturally acquired transmission-blocking immunity (TBI) against Plasmodium vivax, a major malaria parasite. METHODS: Using the direct membrane-feeding assay, we assessed TBI in plasma samples and examined the role of antibodies by removing immunoglobulins through protein G/L adsorption before mosquito feeding. Strain specificity was evaluated by conducting a direct membrane-feeding assay with plasma exchange. RESULTS: Blood samples from 47 patients with P vivax were evaluated, with 37 plasma samples successfully infecting mosquitoes. Among these, 26 showed inhibition before immunoglobulin depletion. Despite substantial immunoglobulin removal, 4 samples still exhibited notable inhibition, while 22 had reduced blocking activity. Testing against heterologous strains revealed some plasma samples with broad TBI and others with strain-specific TBI. CONCLUSIONS: Our findings indicate that naturally acquired TBI is mainly mediated by antibodies, with possible contributions from other serum factors. The transmission-blocking activity of plasma samples varied by the tested parasite strain, suggesting single polymorphic or multiple targets for naturally acquired TBI. These observations improve understanding of immunity against P vivax and hold implications for transmission-blocking vaccine development.


Asunto(s)
Anopheles , Malaria Vivax , Malaria , Animales , Humanos , Plasmodium vivax , Tailandia/epidemiología , Malaria Vivax/parasitología , Inmunidad Adaptativa , Anopheles/parasitología , Anticuerpos Antiprotozoarios , Antígenos de Protozoos
13.
Int J Parasitol ; 54(2): 99-107, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37774810

RESUMEN

The successful completion of gamete fertilization is essential for malaria parasite transmission, and this process can be targeted by intervention strategies. In this study, we identified a conserved gene (PBANKA_0813300) in the rodent malaria parasite Plasmodium berghei, which encodes a protein of 54 kDa (designated as Pbs54). Localization studies indicated that Pbs54 is associated with the plasma membranes of gametes and ookinetes. Functional studies by gene disruption showed that the Δpbs54 parasites had no defect in asexual proliferation, gametocyte development, or gametogenesis. However, the interactions between male and female gametes were significantly decreased compared with wild-type parasites. The Δpbs54 lines did not show a further reduction in zygote and ookinete numbers during in vitro culture, indicating that the defects were probably restricted to gamete fertilization. Consistent with this finding, mosquitoes fed on Δpbs54-infected mice showed a 30.1% reduction in infection prevalence and a 74.7% reduction in oocyst intensity. Cross-fertilization assay indicated that both male and female gametes were impaired in the Δpbs54 parasites. To evaluate its transmission-blocking potential, we obtained polyclonal antibodies from mice immunized with the recombinant Pbs54 (rPbs54) protein. In vitro assays showed that anti-rPbs54 sera inhibited ookinete formation by 42.7%. Our experiments identified Pbs54 as a fertility factor required for mosquito transmission and a novel candidate for a malaria transmission-blocking vaccine.


Asunto(s)
Culicidae , Vacunas contra la Malaria , Malaria , Animales , Femenino , Masculino , Ratones , Anticuerpos Antiprotozoarios , Fertilización , Células Germinativas , Malaria/prevención & control , Proteínas de la Membrana/genética , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes
14.
J Infect Dis ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041857

RESUMEN

BACKGROUND: Plasmodium vivax presents a significant challenge for malaria elimination in the Greater Mekong Subregion (GMS). We evaluated the effectiveness of primaquine (PQ) for reducing relapses of vivax malaria. METHODS: Patients with uncomplicated P. vivax malaria from eastern Myanmar received chloroquine (CQ, 25 mg base/kg given in 3 days) plus unsupervised PQ (0.25 mg/kg/day for 14 days) without screening for glucose-6-phosphate dehydrogenase deficiency and were followed for a year. RESULTS: Totally 556 patients were enrolled to receive the CQ/PQ treatment from February 2012 to August 2013. During the follow-up, 38 recurrences were detected, presenting a cumulative rate of recurrence of 9.1% (95% confidence interval, 4.1-14.1%). Genotyping at the pvmsp1 and pvmsp3α loci by Amplicon deep sequencing and model prediction indicated that 13 of the 27 recurrences with genotyping data were likely due to relapses. Notably, all confirmed relapses occurred within the first six months. CONCLUSIONS: The unsupervised standard dose of PQ was highly effective as a radical cure for P. vivax malaria in eastern Myanmar. The high presumed effectiveness might have benefited from the health messages delivered during the enrollment and follow-up activities. Six-month follow-ups in the GMS are sufficient for detecting most relapses.

15.
Nat Commun ; 14(1): 8302, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097652

RESUMEN

The proteasome of the malaria parasite Plasmodium falciparum (Pf20S) is an advantageous drug target because its inhibition kills P. falciparum in multiple stages of its life cycle and synergizes with artemisinins. We recently developed a macrocyclic peptide, TDI-8304, that is highly selective for Pf20S over human proteasomes and is potent in vitro and in vivo against P. falciparum. A mutation in the Pf20S ß6 subunit, A117D, confers resistance to TDI-8304, yet enhances both enzyme inhibition and anti-parasite activity of a tripeptide vinyl sulfone ß2 inhibitor, WLW-vs. Here we present the high-resolution cryo-EM structures of Pf20S with TDI-8304, of human constitutive proteasome with TDI-8304, and of Pf20Sß6A117D with WLW-vs that give insights into the species selectivity of TDI-8304, resistance to it, and the collateral sensitivity associated with resistance, including that TDI-8304 binds ß2 and ß5 in wild type Pf20S as well as WLW-vs binds ß2 and ß5 in Pf20Sß6A117D. We further show that TDI-8304 kills P. falciparum as quickly as chloroquine and artemisinin and is active against P. cynomolgi at the liver stage. This increases interest in using these structures to facilitate the development of Pf20S inhibitors that target multiple proteasome subunits and limit the emergence of resistance.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Complejo de la Endopetidasa Proteasomal/metabolismo , Sensibilidad Colateral al uso de Fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/farmacología , Antimaláricos/química , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética
16.
Parasit Vectors ; 16(1): 455, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098083

RESUMEN

BACKGROUND: Despite years of effort to develop an effective vaccine against malaria infection, a vaccine that provides individuals with sufficient protection against malaria illness and death in endemic areas is not yet available. The development of transmission-blocking vaccines (TBVs) is a promising strategy for malaria control. A dual-antigen malaria vaccine targeting both pre- and post-fertilization antigens could effectively improve the transmission-blocking activity of vaccines against the sexual stages of the parasite. METHODS: A chimeric recombinant protein Pb22-Pbg37 (Plasmodium berghei 22-P. berghei G37) composed of 19-218 amino acids (aa) of Pb22 and the N-terminal 26-88 aa of Pbg37 was designed and expressed in the Escherichia coli expression system. The antibody titers of the fusion (Pb22-Pbg37) and mixed (Pb22+Pbg37) antigens, as well as those of Pb22 and Pbg37 single antigens were evaluated by enzyme-linked immunosorbent assay. Immunofluorescence and western blot assays were performed to test the reactivity of the antisera with the native proteins in the parasite. The induction of transmission-blocking activity (TBA) by Pb22-Pbg37 and Pb22+Pbg37 were evaluated by in vitro gametocyte activation, gamete and exflagellation center formation, ookinete conversion, and in the direct mosquito feeding assay. RESULTS: The Pb22-Pbg37 fusion protein was successfully expressed in vitro. Co-administration of Pb22 and Pbg37 as a fusion or mixed protein elicited comparable antibody responses in mice and resulted in responses to both antigens. Most importantly, both the mixed and fusion antigens induced antibodies with significantly higher levels of TBA than did each of the individual antigens when administered alone. In addition, the efficacy of vaccination with the Pb22-Pbg37 fusion protein was equivalent to that of vaccination with the mixed single antigens. CONCLUSIONS: Dual-antigen vaccines, which expand/lengthen the period during which the transmission-blocking antibodies can act during sexual-stage development, can provide a promising higher transmission-reducing activity compared to single antigens.


Asunto(s)
Vacunas contra la Malaria , Malaria , Ratones , Animales , Vacunas contra la Malaria/genética , Proteínas Protozoarias/metabolismo , Malaria/parasitología , Vacunación , Proteínas Recombinantes , Anticuerpos Antiprotozoarios , Antígenos de Protozoos/genética , Plasmodium falciparum
17.
Malar J ; 22(1): 339, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940923

RESUMEN

BACKGROUND: Several countries in Southeast Asia are nearing malaria elimination, yet eradication remains elusive. This is largely due to the challenge of focusing elimination efforts, an area where risk prediction can play an essential supporting role. Despite its importance, there is no standard numerical method to quantify the risk of malaria infection. Thus, there is a need for a consolidated view of existing definitions of risk and factors considered in assessing risk to analyse the merits of risk prediction models. This systematic review examines studies of the risk of malaria in Southeast Asia with regard to their suitability in addressing the challenges of malaria elimination in low transmission areas. METHODS: A search of four electronic databases over 2010-2020 retrieved 1297 articles, of which 25 met the inclusion and exclusion criteria. In each study, examined factors included the definition of the risk and indicators of malaria transmission used, the environmental and climatic factors associated with the risk, the statistical models used, the spatial and temporal granularity, and how the relationship between environment, climate, and risk is quantified. RESULTS: This review found variation in the definition of risk used, as well as the environmental and climatic factors in the reviewed articles. GLM was widely adopted as the analysis technique relating environmental and climatic factors to malaria risk. Most of the studies were carried out in either a cross-sectional design or case-control studies, and most utilized the odds ratio to report the relationship between exposure to risk and malaria prevalence. CONCLUSIONS: Adopting a standardized definition of malaria risk would help in comparing and sharing results, as would a clear description of the definition and method of collection of the environmental and climatic variables used. Further issues that need to be more fully addressed include detection of asymptomatic cases and considerations of human mobility. Many of the findings of this study are applicable to other low-transmission settings and could serve as a guideline for further studies of malaria in other regions.


Asunto(s)
Malaria , Humanos , Estudios Transversales , Malaria/prevención & control , Asia Sudoriental/epidemiología , Modelos Estadísticos , Estudios de Casos y Controles
18.
BMC Infect Dis ; 23(1): 801, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37974079

RESUMEN

Malaria is a significant global health concern, with a majority of cases in Sub-Saharan African nations. Numerous antimalarial drugs have been developed to counter the rampant prevalence of Plasmodium falciparum malaria. Artemisinin-based Combination Therapy (ACT) has served as the primary treatment of uncomplicated malaria in Ghana since 2005. However, a growing concern has emerged due to the escalating reports of ACT resistance, particularly in Southeast Asia, and its encroachment into Africa. Specifically, mutations in the Kelch propeller domain on chromosome 13 (Pfk13) have been linked to ACT resistance. Yet, our understanding of mutation prevalence in Africa remains largely uncharted. In this study, we compared Pfk13 sequences obtained from 172 P. falciparum samples across three ecological and transmission zones in Ghana. We identified 27 non-synonymous mutations among these sequences, of which two of the mutations, C580Y (found in two samples from the central region) and Y493H (found in one sample from the north), had previously been validated for their association with artemisinin resistance, a phenomenon widespread in Southeast Asia. The Pfk13 gene diversity was most pronounced in the northern savannah than the central forest and south coastal regions, where transmission rates are lower. The observed mutations were not significantly associated with geographical regions, suggesting a frequent spread of mutations across the country. The ongoing global surveillance of artemisinin resistance remains pivotal, and our findings provides insights into the potential spread of resistant parasites in West Africa. Furthermore, the identification of novel codon mutations in this study raises their potential association to ACT resistance, warranting further investigation through in vitro assays to ascertain their functional significance.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Humanos , Plasmodium falciparum/genética , Artemisininas/farmacología , Artemisininas/uso terapéutico , Ghana/epidemiología , Resistencia a Medicamentos/genética , Proteínas Protozoarias/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Polimorfismo Genético , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Mutación
19.
Parasit Vectors ; 16(1): 403, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37932796

RESUMEN

BACKGROUND: Safe and effective vaccines are crucial for the control and eventual elimination of malaria. Novel approaches to optimize and improve vaccine efficacy are urgently required. Nanoparticle-based delivery platforms are considered potent and powerful tools for vaccine development. METHODS: In this study, we developed a transmission-blocking vaccine against malaria by conjugating the ookinete surface antigen PSOP25 to the Acinetobacter phage coat protein AP205, forming virus-like particles (VLPs) using the SpyTag/SpyCatcher adaptor system. The combination of AP205-2*SpyTag with PSOP25-SpyCatcher resulted in the formation of AP205-PSOP25 complexes (VLP-PSOP25). The antibody titers and avidity of serum from each immunization group were assessed by ELISA. Western blot and IFA were performed to confirm the specific reactivity of the elicit antisera to the native PSOP25 in Plasmodium berghei ookinetes. Both in vitro and in vivo assays were conducted to evaluate the transmission-blocking activity of VLP-PSOP25 vaccine. RESULTS: Immunization of mice with VLP-PSOP25 could induced higher levels of high-affinity antibodies than the recombinant PSOP25 (rPSOP25) alone or mixtures of untagged AP205 and rPSOP25 but was comparable to rPSOP25 formulated with alum. Additionally, the VLP-PSOP25 vaccine enhanced Th1-type immune response with remarkably increased levels of IgG2a subclass. The antiserum generated by VLP-PSOP25 specifically recognizes the native PSOP25 antigen in P. berghei ookinetes. Importantly, antisera generated by inoculation with the VLP-PSOP25 could inhibit ookinete development in vitro and reduce the prevalence of infected mosquitoes or oocyst intensity in direct mosquito feeding assays. CONCLUSIONS: Antisera elicited by immunization with the VLP-PSOP25 vaccine confer moderate transmission-reducing activity and transmission-blocking activity. Our results support the utilization of the AP205-SpyTag/SpyCatcher platform for next-generation TBVs development.


Asunto(s)
Vacunas contra la Malaria , Malaria , Animales , Ratones , Proteínas Protozoarias/metabolismo , Plasmodium berghei , Formación de Anticuerpos , Malaria/prevención & control , Sueros Inmunes , Anticuerpos Antiprotozoarios , Ratones Endogámicos BALB C
20.
Genome Biol ; 24(1): 231, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845769

RESUMEN

Malaria remains one of the deadliest infectious diseases. Transcriptional regulation effects of noncoding variants in this unusual genome of malaria parasites remain elusive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, for predicting chromatin profiles in malaria parasites. The MalariaSED performance was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED to ~ 1.3 million variants shows that geographically differentiated noncoding variants are associated with parasite invasion and drug resistance. Further analysis reveals chromatin accessibility changes at Plasmodium falciparum rings are partly associated with artemisinin resistance. MalariaSED illuminates the potential functional roles of noncoding variants in malaria parasites.


Asunto(s)
Antimaláricos , Aprendizaje Profundo , Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Parásitos/genética , Plasmodium falciparum/genética , Malaria/tratamiento farmacológico , Malaria/parasitología , Cromatina , Resistencia a Medicamentos/genética , Antimaláricos/farmacología , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA